TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division 2081 Chaitra

Exam.	Regular (New Course)		
Level	BE	Full Marks	60
Programme	BCT	Pass Marks	24
Year / Part	II / I	Time	3 hrs.

[3]

[2+3]

Subject: - Theory of Computation (ENCT 203)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) State Diagonalization principle. Using the principle of mathematical induction. [1+3] Show that $1^3 + 2^3 + 3^3 \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$.
 - b) Using rules of inference, show that the premises "If you send me an e-mail message, then I will finish writing the program," "If you do not send me an e-mail message, then I will go to sleep early," and "If I go to sleep early, then I will wake up feeling refreshed" lead to the conclusion "If I do not finish writing the program, then I will wake up feeling refreshed."
 - c) What are power of an alphabet and positive closure of an alphabet? [2]
- 2. a) Explain the processing of a string by finite automata along with its block diagram. Construct DFA that accepts all the string that doesn't contain two consecutive b over $\sum (a, b)$ and process the string w = baaaababb.
 - b) Write down the procedure to check the equivalence of two automata. Convert the given NFA into equivalent DFA. [1+4]

- c) Explain the decision properties of regular languages. [3]
- 3. a) Construct CFG for the language L: $a^nb^mc^md^n$. Test your grammar to generate w = aabbbcccdd and draw parse tree for the same. [4]
 - b) Convert the following CFG, into CNF: $G = (V, \Sigma, R, S)$ where $V = \{S, A, B\}, \Sigma = \{a, b\}, R = \{S \rightarrow A, S \rightarrow B, A \rightarrow aBa, A \rightarrow \epsilon, B \rightarrow bAb, B \rightarrow \epsilon \}$ and S is starting symbol. [5]
 - c) State pumping lemma for context free language and show that $L=\{ww \mid w = \{0,1\}^* \text{ is not CFL.}$ [4]
- 4. a) Design a TM that recognize the L = {aⁿcbⁿ}. Also show how the string w = aaaacbbbb is accepted by your Turing machine. [6]
 - b) Design a Turing machine that can compute a function f(x) = 2x [4]
 - c) Explain the properties of recursive language. [4]
- 5. a) How encoding is done in Turing Machine? Explain. [3]
 - b) Explain NP-Complete problems. [2]
- 6. a) How lexical analyzer and DFA related with each other? Explain with an appropriate example. [3]
 - b) Construct the parse tree for the following. [3]